Updating a Generalized URV Decomposition

نویسندگان

  • Michael Stewart
  • Paul Van Dooren
چکیده

An updating scheme for a quotient type generalization of a URV decomposition of two matrices is introduced. This decomposition allows low complexity updating as rows are added to two rectangular matrices, determining the dimension of three distinct subspaces. One of these subspaces is the intersection of the range space of the two matrices—information which leads to a potential application in subspace algorithms for system identification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wavefront Array for IJRV Decomposition Updating

The rank revealing URV decomposition is a useful tool in many signal processing applications that require the computation of the noise subspace of a matrix. In this paper, we look at the problem of updating the URV decomposition arid consider its implementation on a wavefront array. We prlopose a wavefront array for efficient VLSI implementation of the URV decomposition. The array provides a me...

متن کامل

An Updating Algorithm for On-line MIMO System Identi cation

This paper describes the application of a generalized URV decomposition to an on-line system identiication algorithm. The algorithm updates estimates of a state space model with O(n 2) complexity.

متن کامل

On the QR algorithm and updating the SVD and URV decomposition in Parallel

A Jacobi-type updating algorithm for the SVD or URV decomposition is developed, which is related to the QR algorithm for the symmetric eigenvalue problem. The algorithm employs one-sided transformations, and therefore provides a cheap alternative to earlier developed updating algorithms based on two-sided transformations. The present algorithm as well as the corresponding systolic implementatio...

متن کامل

An Updating Algorithm forSubspace

abstract In certain signal processing applications it is required to compute the null space of a matrix whose rows are samples of a signal with p components. The usual tool for doing this is the singular value decomposition. However, the singular value decomposition has the drawback that it requires O(p 3) operations to recompute when a new sample arrives. In this paper, we show that a diierent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000